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GAPS BETWEEN INTEGERS 
WITH THE SAME PRIME FACTORS 

TODD COCHRANE AND ROBERT E. DRESSLER 

ABSTRACT. We give numerical and theoretical evidence in support of the con- 
jecture of Dressler that between any two positive integers having the same 
prime factors there is a prime. In particular, it is shown that the abc con- 
jecture implies that the gap between two consecutive such numbers a < c is 
> a1/-% and it is shown that this lower bound is best possible. Dressler's 
conjecture is verified for values of a and c up to 7 1013. 

1. INTRODUCTION 

We start with the following conjecture of Dressler. 

Conjecture 1. Between any two positive integers having the same prime factors 
there is a prime. 

If the two integers have just one prime factor then the conjecture is a trivial con- 
sequence of Bertrand's Postulate. On the other hand, the validity of the conjecture 
for numbers composed of 2's and 3's implies Bertrand's Postulate. Indeed, for n > 5 
one can always find positive integers i and j such that n < 2`312332 < 2n. The 
primary reason for believing the conjecture is evidence, both numerical and theo- 
retical, indicating that the gap between two integers with the same prime factors 
is relatively large. 

Conjecture 2. For any e > 0 there exists a constant C(e) such that if a < c are 
positive integers having the same prime factors, then 

(1) c - a > C(c)a2-e. 

It is clear that Conjecture 1 is an easy consequence of Conjecture 2 modulo good 
information on C(e) and on the maximal gap between consecutive primes. In this 
paper we shall prove that Conjecture 2 in turn is an easy consequence of the abc 
conjecture. 

Theorem 1. The abc conjecture implies Conjecture 2. 

We shall also deduce the following unconditional result as a consequence of a 
weaker version of the abc conjecture due to Stewart and Yu [9]. 
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Theorem 2. If a < c are positive integers having the same prime factors, then 

c-a > C(e) (log c) 3 e. 

If the prime factors of a and c are restricted to a fixed finite set S of primes, 
then we have the much stronger lower bound of Tijdeman [10], 

a 
c-a > (log a)C' 

with the drawback being that the constant C depends on the set S. 
Cramer [4] conjectured that the gap between consecutive primes pn 

and Pn+1 is 0(log2 Pn), in fact he made the stronger conjecture that 
lim supnO,0 (Pn+1 - pn)/ log2(pn) - 1. Computer searches have shown that 
Pn+1 - Pn < 1og2Pn for values of Pn up to 7 x 1013; see Shanks [8], Lander and 
Parkin [6], Brent [1], and Young and Potler [12]. On the assumption of the Rie- 
mann Hypothesis, Cramer proved that there always exists a prime between n and 
r + O(nr logn). In order to deduce Conjecture 1 from Conjecture 2 one needs 
gaps of size 0(n 1 

-e), which is somewhere between what one obtains from the Rie- 
mann Hypothesis and what Cramer has conjectured. On the other hand, with 
just a "modest" impovement in Theorem 2, specifically obtaining c - a > (log c)2, 
Conjecture 1 is essentially a consequence of Cramer's conjecture. 

The following example shows that the exponent in (1) cannot be taken to be 
equal to 1/2. Indeed, we obtain an infinite family of pairs of positive integers a < c 
having the same prime factors and satisfying 
(2) c-a2< 2 2og2a1/2 

(log a) 2 

Example. Let k be any positive integer and define a1, cl by 

a1 = 2(2k - 1)2, c_ = 2k+1 (2k _ 1). 

Then cl, a1 have the same prime divisors and cl - a, = 'ai 1/2. Suppose now that 
k = 2 3j-1 where j > 2 is a positive integer. Then we have 3il(2k - 1) and so we 
can divide a1 and cl by 3j-1 and end up with two smaller numbers 

2(2k _ 1)2 2k+1(2k - 1) 
a 3i-1 33-1 

having the same prime factors and satisfying 

c-a 3 (j-/2 a1/2- 2 1/2 

Now, 

log a = log 2 + 2 log(2k - 1) -(j - 1) log 3 < 2k log 2, 

that is, k > loga/(2log2), and thus we obtain (2). Similar examples may be 
obtained by dividing out other prime powers or by replacing (2k - 1) with (2k + 1) 
or by replacing 2 with any other positive integer m > 1, but we know of no example 
where the order of magnitude is less than what we obtain in (2). 

If a and c have just two prime divisors then we show that the exponent in (1) 
can be taken to be equal to 1/2 on the assumption of the abc conjecture. 

Theorem 3. Suppose that a < c are positive integers having the same two prime 
divisors. Then, on the assumption of the abc conjecture, c-a - a? 
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In Section 3 we use results of de Weger [11] to prove (Theorem 4 in this paper) 
that the only positive integers a < c composed of the same two primes p, q with 
p < q < 200 and 

(3) c-a < Va 

are (a,c) = (48,54) = (24 *3,2 33), (a,c) = (1250, 1280) = (2- 54,28 5) and 
(a,c) = (11859482,11862016) = (2 . 1813,216 181). The following is an open 
question. 

Question 1. Are there infinitely many pairs a < c having the same two prime factors 
satisfying (3)? 

Using the table of Young and Potler [12] on first occurrences of prime gaps, 
we have been able to verify with a computer search that Conjecture 1 is valid for 
a < c < 7 1013. The only example in this range with c - a less than the maximal 
gap between primes up to c is (a, c) = (2400,2430). The largest gap between 
consecutive primes up to 7. 1013 is just 778, substantially smaller than the cube 
root of 7. 1013. Thus for n > 7. 1013 it is reasonable to believe that there is always a 
prime between n and n + n/3. In this case, Conjecture 1 follows if one can establish 
that for any a < c having the same prime factors, 

(4) c -a > al3 

We know of no example for which (4) fails, and so we ask 

Question 2. Is there any pair a < c composed of the same prime factors with 
c - a < a 

From de Weger's work in [11] we can obtain (Theorem 5) all solutions of (3) with a 
and c composed of the primes 2,3,5,7,11 and 13, and having the same prime factors. 
All of these solutions satisfy (4) as well. Thus (4) holds for all a, c composed of the 
same primes from the set 2,3,5,7,11, and 13. Further examples satisfying (3) may 
be gleaned from the tables of Nitaj [7] and Browkin and Brzezinski [2] on extremal 
examples for the abc conjecture. All of these examples satisfy (4) as well. 

2. PROOFS OF THEOREMS 1 AND 2 

For any positive integer n let No (n) = Hplnp, the product being over the distinct 
prime factors of n. 

The abc conjecture. For any e > 0 there exists a constant C(e) such that for 
any nonzero relatively prime integers a, b and c with a + b = c we have 

(5) max (lal, Ibl, Icl) < C(c)No(abc)1+c. 

Suppose now that a < c are positive integers having the same prime factors. Let 
b= c -a. Put P No(a) = NO(c) and d= (a, b) = (a, c) = (b, c). Then d + d - c 

and the integers d and d are relatively prime. Now d d 

a b ccb b b2 
(6) No ( - ) < No(ac)No(d) < Pd < -d 

the last inequality following since Plb. It follows from (5) that d < C)(b2 )l+ 

and so c < C(E)b2( +c), that is b > Cf(6)c ?c. This establishes Theorem 1. 
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For the proof of Theorem 2 we proceed as above but instead of applying the abc 
conjecture we apply the following weaker, but proven, result of Stewart and Yu [9]. 
Under the same assumptions as in the abc conjecture above we have 

max(log Ia , log I b, log I?c< C(e)No(abc) 3+. 

In our application we obtain 

log(c/d) ? (b2/d)3+?, 

from which we deduce 

b2 By d(log(c/d))3-2'By (log c) 2-e 

which completes the proof of Theorem 2. The latter inequality follows from the 
claim, for 2 < d < c/2 and 0 < e < 3/2 we have 

d(log (c/d)) 32-' > . 7(log c) 32-e. 

The claim follows from observing that 

d(1 _ logd> 2 ( logd >3/2 (log2 >3/2 (log2)3/2 
log c - log 2d log 2dJ log 4 

3. THE CASE OF TWO PRIME FACTORS: 

PROOF OF THEOREM 3 

Suppose that a < c are positive integers composed of the same two prime divisors 
p, q. Let (a, c) = peqf and write 

(7) C = pe+gqf a = pq fh b = c-a = peqf (p9 qh). 

We start by observing that in this case a large gap between a and c is tantamount 
to a large gap between the prime powers p9 and qh. To be precise, the inequality 

(8) c-a > al/2 

is equivalent to the inequality 

(9) ps _ qh > p 92 h1f- g 

To see this we consider two cases. If qh < pg, then (8) and (9) are both trivially 
true, and so we may assume that lpg < qh < p9. Now (8) is equivalent to 

pg qh >? p 2 q 2 

Substituting q p9/h into the right-hand side yields (9). 
We conclude the proof of Theorem 3 by showing that (9) holds true under the 

assumption of the abc conjecture. 
It suffices to consider the case e f = 1 whence (9) becomes 

(10) p- _ qh > p 

If h = 1 or g = 1 or (h, g) = (2, 2), then (10) is trivial. Thus we may assume that 
h > 2, g > 2, and that either h or g is > 3. Now, the abc conjecture, applied to 
the sum pg - qh = (pg - qh), implies that 

p9 
? 

(pqlpg9 
- h )1+e 
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or equivalently 

(11) IP9 -qhp 
- 

I p9(19-KUe)h 

the constants depending on e. Since 1/h + 1/g < 5/6, one obtains (10) from (11) 
on taking e < 1/12. This completes the proof of Theorem 3. DH 

Remark. The argument above applies just as well to any relatively prime integers p 
and q (not necessarily primes). Thus Theorem 3 is valid for any a, c as in (7) with 
p, q relatively prime positive integers. 

As one can see by the equivalence of (8) and (9), finding pairs a, c with c - a 
small amounts to finding two prime powers close together. Cijsouw, Korlaar and 
Tijdeman [3] found all solutions of the inequality 

(12) P9- qhI < pg/2 

in positive integers g, h and primes p < q < 20. Their work was extended by de 
Weger ([11], Theorem 4.3) to the range p < q < 200; see also Deze and Tijdeman 
([5], Lemma 1). Now any solution of (3) with a, b, c as in (7) satisfies 

-e h-f -1 h-1 
p9 -q <p 2 q 2 <p 2 q 2 

If p < q, then using the fact that q < pg/h we obtain 

(13) p - qh < 2 (1-1 ) 

which is a stronger inequality than (12). If q < p, then p-1/2 < q-1/2 and so we 
obtain 

g h h _1 
p -q < q2 

which again is stronger than (12) with the roles of p and q reversed. Thus all 
solutions of (3) with p, q < 200 may be found by testing the solutions of (12) given 
by de Weger in [11]. By doing so we obtain 

Theorem 4. Sutppose that a < c are positive integers as in (7) with p, q < 200 and 
c-a < al/2. Then (a,c) = (48,54) = (24 3,2 33), (1250,1280) = (2 .54,28.5) or 
(11859482,11862016) = (2 1813,216 .181). 

4. a,c RESTRICTED TO THE PRIMES 2, 3, 5, 7, 11 AND 13 

In [11, Theorem 4.6], de Weger solved the diophantine inequality 

(14) 0 < c-a < a1/2 

with 

a, c E {2x1 . . 13 6 x? C Z,x? > 0, (1 < i < 6)}, 

and (a, c) = 1. He found exactly 605 solutions, and all of them satisfy v2(ac) < 26, 

v3(ac) < 19, v5(ac) < 13, v7(ac) < 13, v11(ac) < 7, and v13(ac) < 8. Here, vp(n) 
denotes the multiplicity of p dividing n. We ran a program in UBASIC to test 

which of these satisfy the stronger inequality 

0 < P(c-a) < (Pa) 

where P is the product of the primes appearing in ac. In this manner we were able 

to establish 
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Theorem 5. There are 58 pairs of positive integers a < c having the same prime 
factors, with the primes selected from the set {2, 3, 5, 7,11, 13}, such that c - a < 
a1 2. In every such pair we have c < 15 109, and c -a > al/3. Of these pairs, 19 
are primitive, (a, c) = 1. 

A complete listing of the pairs in Theorem 5 is available upon request. 

5. SMALL GAPS WITH a < c < 7. 1013 

In the chart below we list all pairs 0 < a < c < 7. 1013, having the same prime 
factors, with c - a less than twice the maximal gap between primes up to c. 

a c c-a max prime gap 

48 = 24- 3 54= 2 33 6 6 
1250 = 2 54 1280 = 28 5 30 22 
2016 = 25 32 .7 2058 = 2 3 73 42 34 
2400 = 25.3 .52 2430 = 2 35 5 30 34 
2646= 2. 33 72 2688 = 27 3 7 42 34 
15972 = 22 .3. 113 16038 = 2 36 .11 66 44 
29376 = 26 33.17 29478 = 2.3.172 102 52 
58368 = 210 . 3 19 58482 = 2 . 34 192 114 72 
504000 = 26 32. 53.7 504210 = 2 35 75 210 114 
918540 = 22 38 5.7 918750 = 2.3 .55 72 210 114 

The table above was obtained by a direct search on a PC using UBASIC. The idea 
of the program is very simple, and it runs extremely fast. For example if a, c have 
three odd primes in common, say P1, P2, P3, then we know P1P2P3 < 778/2, half 
the maximal gap between consecutive primes up to 7. 1013, and so the choices for 
P1, P2 and p3 are very restricted, etc. 
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